NMR Investigations on Boron Complexes in the Conjugate Addition on $\alpha_{,\beta}$ -Unsaturated Imides

ORGANIC LETTERS 2001 Vol. 3, No. 8 1165-1167

Giuliana Cardillo,* Luca Gentilucci, Massimo Gianotti, and Alessandra Tolomelli

Dipartimento di Chimica "G. Ciamician" and CSFM-CNR, Università di Bologna, via Selmi 2, 40126 Bologna, Italy

cardillo@ciam.unibo.it

Received January 25, 2001

ABSTRACT

The 1,4-addition of *O*-benzylhydroxylamine to $\alpha_{,\beta}$ -unsaturated imide 1 in the presence of BF₃·Et₂O proceeds with the preferential attack of the nucleophile on the C β -re face. To explain this unexpected reactivity ¹H, ¹³C, and ¹¹B NMR investigations have been carried out on the boron–imide complex, which show the presence of an *S*-cis imide chain conformation.

Numerous recent studies make use of Lewis acids to catalyze organic reactions.¹ The 1,4-addition of nucleophiles to α , β unsaturated carboxylic acid derivatives has proven to be a useful method for the asymmetric induction at the β -carbon with carbon–carbon or carbon–heteroatom bond formation.² In this context, the conjugate addition of amines to α , β unsaturated carbonyl compounds is one of the most popular and useful procedures for the synthesis of optically active β -amino acids.³ When we began this study with the aim of

preparing chiral β -amino acids, we obtained a good degree of asymmetric induction in the addition of *O*-benzylhydroxylamine to chiral imides in the presence of Lewis acid by using 1,5-dimethyl-4-phenylimidazolidin-2-one as chiral auxiliary.⁴ Lewis acids greatly enhance the electrophilicity of the β -carbon, lowering the molecular orbitals of α , β unsaturated compounds, and ensure a good diastereofacial control by blocking the substrate in a dominant reactive conformer.⁵

The ¹H NMR spectra of α , β -unsaturated derivatives and Lewis acids give useful information on the complex, based on the chemical shift changes.⁶ Accordingly, NMR experiments on Et₂AlCl-imide complexes carried out contemporaneously by Castellino^{6b} and us⁴ show chemical shift changes between the ground state of the substrate and the aluminum-substrate complex, in agreement with a chelated structure as reported in Figure 1.

⁽¹⁾ For a review on Lewis acid promoted addition to carbonyl compounds, see: (a) Reetz, M. T. *Angew. Chem., Int. Ed. Engl.* **1984**, *23*, 556– 569. (b) Reetz, M. T.; Kesseler, K.; Schmidtberger, S.; Wenderoth, B.; Steinbach, R. *Angew. Chem., Int. Ed. Engl.* **1983**, *22*, 989–990.

⁽²⁾ For a review on conjugate additions, see: (a) Oare, D. A.; Heathcock, C. H. *Top. Stereochem.* **1991**, *20*, 87–170. (b) Trost, B. M.; Fleming, I. *Comprehensive Organic Synthesis*; Pergamon Press: Oxford, 1991; Vol. 4, pp 1–236. (c) Perlmutter, P. *Conjugate Addition Reactions in Organic Synthesis*; Pergamon Press: Oxford, 1992. (d) Perlmutter, P. In *Advances in Asymmetric Synthesis*; Stephenson, G. R., Ed.; Chapman & Hall: London, 1996; pp 222–230. (e) Leonard, J.;Diez-Barra, E.; Merino, S. *Eur. J. Org. Chem.* **1998**, 2051–2061. (f) Sibi, M. P.; Manyem, S. *Tetrahedron* **2000**, *56*, 8033–8061.

^{(3) (}a) Asao, N.; Shimada, T.; Sudo, T.; Tsukada, N.; Yazawa, K.; Gyoung, Y. S.; Uyehara, T.; Yamamoto, Y. *J. Org. Chem.* **1997**, *62*, 6274– 6282. (b) Cole, D. C. *Tetrahedron* **1994**, *50*, 9517–9582. (c) Juaristi, E.; Quintana, D.; Escalante, J. *Aldrichimica Acta* **1994**, *27*, 3–11. (d) Cardillo, G., Tomasini, C. *Chem. Soc. Rev.* **1996**, 117–128. (e) Sibi, M. P.; Shay, J. J.; Liu, M.; Jasperse, C. P. *J. Am. Chem. Soc.* **1998**, *120*, 6615–6616.

⁽⁴⁾ Amoroso, R., Cardillo, G.; Sabatino, P.; Tomasini, C.; Trerè, A. J. Org. Chem. **1993**, 58, 5615–5619.

^{(5) (}a) Evans, D. A.; Chapman, K. T.; Bisaha, J. J. Am. Chem. Soc. **1988**, 110, 1238–1256.

^{(6) (}a) Laszlo, P.; Teston, M. J. Am. Chem. Soc. 1990, 112, 8750-8754.
(b) Castellino, S., Dwight, W. J. J. Am. Chem. Soc. 1993, 115, 2986-2987. (c) Childs, R. F.; Mulholland, D. L.; Nixon, A. Can. J. Chem 1982, 60, 801-808.

Figure 1. Aluminum $-\alpha,\beta$ -unsaturated imide complex.

On pursuing our studies on the 1,4-addition of *O*benzylhydroxylamine to unsaturated imides (Scheme 1), we performed the reaction in the presence of BF_3 •Et₂O. Some results are reported in Table 1.

These results are a real surprise since $BF_3 \cdot Et_2O$ has only one coordination site and should thus be incapable of chelation. On the other hand, the chelation-controlled product **2** was obtained as the major isomer in the reaction with $BF_3 \cdot$ Et_2O . The same compound was obtained when $AlMe_2Cl$ or $MgBr_2$ was utilized in this kind of reaction. Since boron has long been regarded as a non-chelating Lewis acid, in an effort to rationalize the course of the reaction and, in particular, to explain the analogous reactivity between $AlMe_2Cl$ and $BF_3 \cdot$ Et_2O , we carried out the following model. First of all we examined the ¹H NMR⁷ behavior of imides **1a** and **1b** after adding 1 equiv of $BF_3 \cdot Et_2O$ in CD_2Cl_2 . These experiments

Table 1.1,4-Addition of *O*-Benzylhydroxylamine toUnsaturated Imides

		BF ₃ •Et ₂ O			
entry	imide	(equiv)	<i>t</i> (h)	yield ^a (%)	dr ^a 2 /3
1	1a	1	70	80	90:10
2	1a	2	70	>95	90:10
3	1b	1	72	40^{b}	90:10
4	1b	2	72	60 ^b	90:10

 a Calculated by ¹H NMR. All the reactions were carried out in CH₂Cl₂ from -40 °C to rt. b The unreacted starting material was recovered from the reaction.

show the presence of two species that evolve toward a sole complex after adding another equivalent of $BF_3 \cdot Et_2O$. This last complex, which is present in both $1a-BF_3 \cdot Et_2O$ (1 equiv) and in $1a-BF_3 \cdot Et_2O$ (2 equiv), is in our opinion the reactive one and it is responsible for the diastereomeric ratio. The ¹H NMR spectra of 1a, $1a-BF_3 \cdot Et_2O$ (1 equiv), and $1a-BF_3 \cdot Et_2O$ (2 equiv) are reported in Figure 2.

Figure 2. ¹H NMR of 1a and 1a - BF₃·Et₂O complex.

The ¹H NMR spectra suggest the coordination of both carbonyl groups C2 and C1' since $H_{2'}$ and $H_{3'}$ are respectively shielded and deshielded, in agreement with a preferential *S*-*cis* conformation of the unsaturated imide chain.⁴ This situation favors a preferential attack from the C β -re face, as confirmed by the results reported in Table 1. The ¹H NMR data related to imidates **1a** and **1b** are reported in Table 2.

Table 2. ¹H NMR Data for α,β -Unsaturated Imide Complexes with BF₃·Et₂O (2 equiv)

-				
$H_{2^{\prime}}$	$H_{3^{\prime}}$	$H_{4^{\prime}}$	H_4	H_5
7.47	6.95	1.90	5.30	3.89
6.13	7.98	2.08	6.18	4.97
7.42	6.90	2.50	5.32	3.90
5.97	7.90	2.57	6.21	4.97
			4.77	3.89
			5.13	4.19
	H _{2'} 7.47 6.13 7.42 5.97	$\begin{array}{c cc} H_{2'} & H_{3'} \\ \hline 7.47 & 6.95 \\ 6.13 & 7.98 \\ 7.42 & 6.90 \\ 5.97 & 7.90 \\ \end{array}$	$\begin{array}{c ccccc} H_{2'} & H_{3'} & H_{4'} \\ \hline 7.47 & 6.95 & 1.90 \\ 6.13 & 7.98 & 2.08 \\ 7.42 & 6.90 & 2.50 \\ 5.97 & 7.90 & 2.57 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

On the basis of this observation, we tried to examine the real coordination between BF₃·Et₂O and the substrates, taking into account three possible situations: (a) the chelation of

⁽⁷⁾ NMR spectra were recorded with a Gemini Varian 300 MHz spectrometer. Chemical shifts were reported as δ values relative to the solvent peak of CDCl₃ set at $\delta = 7.27$ ppm (¹H NMR) or $\delta = 77.0$ ppm (¹C NMR). For ¹¹B spectra, BF₃·Et₂O was taken as external reference at $\delta = 0$ ppm.

both carbonyls with a BF₃ molecule, with formation of a pentacoordinate boron complex; (b) the chelation of both carbonyls with a BF₃ molecule, with displacement of a fluorine and formation of a BF₄⁻ molecule; (c) the coordination of each carbonyl with one molecule of BF₃ with formation of a "U-shaped" complex where electrostatic attraction simulate chelation.

Recently Maruoka and co-workers⁸ reported that boron and aluminum are capable of forming pentacoordinate chelate-type complexes in certain reaction systems. To prove the hypothetical existence of pentacoordinate boron fluoride complexes, we carried out further investigations. The ¹³C NMR studies performed on **1a**– and **1b**–BF₃•Et₂O (2 equiv), recorded at 20 °C, confirm that the carbonyl C1' is significantly deshielded by the boron coordination, while the carbonyl 2 shows only a slight chemical shift change (Table 3). To verify why this carbonyl group is quite unchanged

Table 3. ¹³C NMR Data for α , β -Unsaturated Imide Complexes with BF₃·Et₂O (2 equiv)

	· ·				
imide	$C_{4^{\prime}}$	$C_{2^{\prime}}$	$C_{3^{\prime}}$	C_2	$C_{1^{\prime}}$
1a	18.5	123.6	144.1	156.0	164.7
$1a - BF_3 \cdot Et_2O$	21.1	116.4	167.9	155.3	170.1
1b	31.6	119.6	155.1	156.1	165.1
$1b-BF_3$ ·Et ₂ O	33.9	112.9	176.6	155.2	170.6
A *				162.3	
A^*-BF_3 ·Et ₂ O				161.0	

by the presence of boron trifluoride, the ¹H and ¹³C NMR spectra of the 1,5-dimethyl-4-phenylimidazolidin-2-one alone and with 1 equiv of BF₃·Et₂O were recorded in CD₂Cl₂. The comparison of ¹H chemical shifts of the ground state and the complex showed a deshielding of H₄ and H₅ of 0.3 ppm (Table 2), while only small changes were observed in ¹³C NMR chemical shifts. Indeed, only a shift of 1 ppm was observed for the signal relative to carbonyl C2, confirming a slight effect of the boron coordination on this position (Table 3). On the basis of ¹³C results, the pentacoordination of boron may not be ruled out and further investigations have been made through ¹¹B NMR.⁹ The spectra were recorded at rt, at -40 °C, and at -60 °C, taking BF₃•Et₂O (0 ppm) as external reference. The spectrum of $1-BF_3$ •Et₂O (2 equiv) showed a unique signal at -0.9 ppm at room temperature, while a second signal at 0 ppm was observed when an excess of BF₃•Et₂O was added in the same sample. On the other hand, the signal at 0 ppm was already present when the spectra were recorded at -40 and -60 °C; this signal increased when BF₃•Et₂O was added in excess.

On the basis of these results, the preferential hypothesis of a boron tetracoordination instead of a boron pentacoordination is advanced.¹⁰ Furthermore, the presence of a unique boron signal disfavors the possibility of formation of BF_4^- , obtained from the displacement of fluorine.¹¹

Therefore, in conclusion, we propose the coordination of each carbonyl group with a BF₃ molecule that allows the *syn* conformation of the substrate imide, in which electrostatic attractions between BF₃ at C1' and the partially positive carbonyl moiety could simulate chelation (Figure 3).

Figure 3. α,β -Unsaturated imide complex with BF₃·Et₂O (2 equiv).

Acknowledgment. We thank MURST (Cofin 2000 and 60%) and the University of Bologna (funds for selected topics "Sintesi e Caratterizzazione di Biomolecole per la Salute Umana") for financial support.

Supporting Information Available: The ¹H, ¹³C, and ¹¹B spectra of compounds **1a** and **1b** and of the boron complex. This material is available free of charge via the Internet at http://pubs.acs.org.

OL015616N

^{(8) (}a) Maruoka, K.; Ooi, T. *Chem. Eur. J.* **1999**, *3*, 829–833. (b) Ooi, T.; Uraguchi, D.; Kagoshima, N.; Maruoka, K. *J. Am. Chem. Soc.* **1998**, *120*, 5327–5328.

⁽⁹⁾ Parks, D. J.; Piers, W. E.; Parvez, M.; Atencio, R.; Zaworotko, M. J. *Organometallics* **1998**, *17*, 1369–1377 and references therein.

⁽¹⁰⁾ Lee, D. Y.; Martin, J. C. J. Am. Chem. Soc. 1984, 106, 5745-5746.

⁽¹¹⁾ Mann, B. E. In *NMR and the Periodic Table*; Harris, R. K., Mann, B. E., Eds.; Academic Press: London, 1978; pp 91–93.