NMR Investigations on Boron Complexes in the Conjugate Addition on r**,***â***-Unsaturated Imides**

ORGANIC LETTERS 2001 Vol. 3, No. 8 ¹¹⁶⁵-**¹¹⁶⁷**

Giuliana Cardillo,* Luca Gentilucci, Massimo Gianotti, and Alessandra Tolomelli

*Dipartimento di Chimica "G. Ciamician" and CSFM-CNR, Uni*V*ersita*` *di Bologna,* V*ia Selmi 2, 40126 Bologna, Italy*

cardillo@ciam.unibo.it

Received January 25, 2001

ABSTRACT

The 1,4-addition of *O*-benzylhydroxylamine to α , β -unsaturated imide 1 in the presence of BF₃·Et₂O proceeds with the preferential attack of the **nucleophile on the C***â***-re face. To explain this unexpected reactivity ¹ H, 13C, and 11B NMR investigations have been carried out on the boron**− **imide complex, which show the presence of an** *S***-***cis* **imide chain conformation.**

Numerous recent studies make use of Lewis acids to catalyze organic reactions.¹ The 1,4-addition of nucleophiles to α , β unsaturated carboxylic acid derivatives has proven to be a useful method for the asymmetric induction at the β -carbon with carbon-carbon or carbon-heteroatom bond formation.² In this context, the conjugate addition of amines to α , β unsaturated carbonyl compounds is one of the most popular and useful procedures for the synthesis of optically active $β$ -amino acids.³ When we began this study with the aim of preparing chiral *â*-amino acids, we obtained a good degree of asymmetric induction in the addition of *O*-benzylhydroxylamine to chiral imides in the presence of Lewis acid by using 1,5-dimethyl-4-phenylimidazolidin-2-one as chiral auxiliary.4 Lewis acids greatly enhance the electrophilicity of the β -carbon, lowering the molecular orbitals of α , β unsaturated compounds, and ensure a good diastereofacial control by blocking the substrate in a dominant reactive conformer.5

The ¹H NMR spectra of α , β -unsaturated derivatives and
wis acids give useful information on the complex based Lewis acids give useful information on the complex, based on the chemical shift changes.6 Accordingly, NMR experiments on Et₂AlCl-imide complexes carried out contemporaneously by Castellino^{6b} and us⁴ show chemical shift changes between the ground state of the substrate and the aluminum-substrate complex, in agreement with a chelated structure as reported in Figure 1.

⁽¹⁾ For a review on Lewis acid promoted addition to carbonyl com-
pounds, see: (a) Reetz, M. T. Angew. Chem., Int. Ed. Engl. 1984 , 23, 556– pounds, see: (a) Reetz, M. T. *Angew. Chem., Int. Ed. Engl.* **¹⁹⁸⁴**, *²³*, 556- 569. (b) Reetz, M. T.; Kesseler, K.; Schmidtberger, S.; Wenderoth, B.; Steinbach, R. *Angew. Chem., Int. Ed. Engl.* **¹⁹⁸³**, *²²*, 989-990.

⁽²⁾ For a review on conjugate additions, see: (a) Oare, D. A.; Heathcock, C. H. *Top. Stereochem*. **¹⁹⁹¹**, *²⁰*, 87-170. (b) Trost, B. M.; Fleming, I. *Comprehensive Organic Synthesis*; Pergamon Press: Oxford, 1991; Vol. 4, pp 1-236. (c) Perlmutter, P. *Conjugate Addition Reactions in Organic* 4, pp 1-236. (c) Perlmutter, P. *Conjugate Addition Reactions in Organic Synthesis*; Pergamon Press: Oxford, 1992. (d) Perlmutter, P. In *Advances in Asymmetric Synthesis: Stephenson G. R. Ed.: Chapman & Hall: London in Asymmetric Synthesis;* Stephenson, G. R., Ed.; Chapman & Hall: London, 1996; pp 222-230. (e) Leonard, J.;Diez-Barra, E.; Merino, S. *Eur. J. Org. Chem.* **¹⁹⁹⁸**, 2051-2061. (f) Sibi, M. P.; Manyem, S. *Tetrahedron* **²⁰⁰⁰**, *⁵⁶*, 8033-8061.

^{(3) (}a) Asao, N.; Shimada, T.; Sudo, T.; Tsukada, N.; Yazawa, K.; Gyoung, Y. S.; Uyehara, T.; Yamamoto, Y*. J. Org. Chem.* **¹⁹⁹⁷**, *⁶²*, 6274- 6282. (b) Cole, D. C. *Tetrahedron* **¹⁹⁹⁴**, *⁵⁰*, 9517-9582. (c) Juaristi, E.; Quintana, D.; Escalante, J. *Aldrichimica Acta* **¹⁹⁹⁴**, *²⁷*, 3-11. (d) Cardillo, G., Tomasini, C. *Chem. Soc. Re*V. **¹⁹⁹⁶**, 117-128. (e) Sibi, M. P.; Shay, J. J.; Liu, M.; Jasperse, C. P. *J. Am. Chem. Soc.* **¹⁹⁹⁸**, *¹²⁰*, 6615-6616.

⁽⁴⁾ Amoroso, R., Cardillo, G.; Sabatino, P.; Tomasini, C.; Trere`, A. *J. Org. Chem.* **¹⁹⁹³**, *⁵⁸*, 5615-5619.

^{(5) (}a) Evans, D. A.; Chapman, K. T.; Bisaha, J. *J. Am. Chem*. *Soc.* **1988**, *¹¹⁰*, 1238-1256.

^{(6) (}a) Laszlo, P.; Teston, M. *J. Am. Chem. Soc*. **¹⁹⁹⁰**, *¹¹²*, 8750-8754. (b) Castellino, S., Dwight, W. J. *J. Am. Chem. Soc*. **¹⁹⁹³**, *¹¹⁵*, 2986- 2987. (c) Childs, R. F.; Mulholland, D. L.; Nixon, A. *Can. J. Chem* **1982**, *⁶⁰*, 801-808.

Figure 1. Aluminum $-\alpha$, β -unsaturated imide complex.

On pursuing our studies on the 1,4-addition of *O*benzylhydroxylamine to unsaturated imides (Scheme 1), we performed the reaction in the presence of BF_3 ⁺ Et_2O . Some results are reported in Table 1.

These results are a real surprise since BF_3 ^{\cdot}Et₂O has only one coordination site and should thus be incapable of chelation. On the other hand, the chelation-controlled product **2** was obtained as the major isomer in the reaction with BF_3 . $Et₂O$. The same compound was obtained when $AlMe₂Cl$ or $MgBr₂$ was utilized in this kind of reaction. Since boron has long been regarded as a non-chelating Lewis acid, in an effort to rationalize the course of the reaction and, in particular, to explain the analogous reactivity between AlMe_2Cl and BF_3 ^{*} $Et₂O$, we carried out the following model. First of all we examined the 1H NMR7 behavior of imides **1a** and **1b** after adding 1 equiv of BF_3 ⁺ Et_2O in CD_2Cl_2 . These experiments

Table 1. 1,4-Addition of *O*-Benzylhydroxylamine to Unsaturated Imides

		$BF_3 \cdot Et_2O$			
entry	imide	(equiv)	t(h)	yield ^a $(\%)$	$dr^2/3$
	1a		70	80	90:10
2	1a	2	70	> 95	90:10
3	1b		72	40 ^b	90:10
4	1b	2	72	60^b	90:10

a Calculated by ¹H NMR. All the reactions were carried out in CH_2Cl_2 from -⁴⁰ °C to rt. *^b* The unreacted starting material was recovered from the reaction.

show the presence of two species that evolve toward a sole complex after adding another equivalent of BF_3 ^{\cdot}Et₂O. This last complex, which is present in both $1a-BF_3$ ⁻Et₂O (1) equiv) and in $1a-BF_3$ ⁻Et₂O (2 equiv), is in our opinion the reactive one and it is responsible for the diastereomeric ratio. The ¹H NMR spectra of $1a$, $1a-BF_3$ ⁻Et₂O (1 equiv), and $1a-BF_3$ ⁻Et₂O (2 equiv) are reported in Figure 2.

Figure 2. ¹H NMR of $1a$ - and $1a$ -BF₃ \cdot Et₂O complex.

The 1H NMR spectra suggest the coordination of both carbonyl groups C2 and C1' since H_2 ['] and H_3 ['] are respectively shielded and deshielded, in agreement with a preferential *S*-*cis* conformation of the unsaturated imide chain.4 This situation favors a preferential attack from the C*â*-re face, as confirmed by the results reported in Table 1. The ¹H NMR data related to imidates **1a** and **1b** are reported in Table 2.

Table 2. ¹H NMR Data for α , β -Unsaturated Imide Complexes with BF_3 **'** Et_2O (2 equiv)

imide	$H_{2'}$	$H_{3'}$	$H_{4'}$	H4	H_5
1a	7.47	6.95	1.90	5.30	3.89
$1a-BF_3$ ·Et ₂ O	6.13	7.98	2.08	6.18	4.97
1b	7.42	6.90	2.50	5.32	3.90
$1b - BF_{3} \cdot Et_{2}O$	5.97	7.90	2.57	6.21	4.97
A*				4.77	3.89
A^* -BF ₃ ·Et ₂ O				5.13	4.19

On the basis of this observation, we tried to examine the real coordination between BF_3 ⁻ Et_2O and the substrates, taking into account three possible situations: (a) the chelation of

⁽⁷⁾ NMR spectra were recorded with a Gemini Varian 300 MHz spectrometer. Chemical shifts were reported as *δ* values relative to the solvent peak of CDCl₃ set at $\delta = 7.27$ ppm (¹H NMR) or $\delta = 77.0$ ppm (13 C NMR). For ${}^{11}B$ spectra, BF_3 Et₂O was taken as external reference at $\delta = 0$ ppm.

both carbonyls with a BF_3 molecule, with formation of a pentacoordinate boron complex; (b) the chelation of both carbonyls with a BF_3 molecule, with displacement of a fluorine and formation of a BF_4^- molecule; (c) the coordination of each carbonyl with one molecule of BF_3 with formation of a "U-shaped" complex where electrostatic attraction simulate chelation.

Recently Maruoka and co-workers⁸ reported that boron and aluminum are capable of forming pentacoordinate chelate-type complexes in certain reaction systems. To prove the hypothetical existence of pentacoordinate boron fluoride complexes, we carried out further investigations. The 13C NMR studies performed on $1a$ – and $1b - BF_3$ ⁻Et₂O (2 equiv), recorded at 20 °C, confirm that the carbonyl C1′ is significantly deshielded by the boron coordination, while the carbonyl 2 shows only a slight chemical shift change (Table 3). To verify why this carbonyl group is quite unchanged

Table 3. ¹³C NMR Data for α , β -Unsaturated Imide Complexes with BF_3 ⁺ Et_2O (2 equiv)

imide	$C_{4'}$	$C_{2'}$	$C_{3'}$	C ₂	$C_{1'}$
1a	18.5	123.6	144.1	156.0	164.7
$1a-BF_3$ Et_2O	21.1	116.4	167.9	155.3	170.1
1b	31.6	119.6	155.1	156.1	165.1
$1b-BF_3$ ·Et ₂ O	33.9	112.9	176.6	155.2	170.6
A^*				162.3	
A^* -BF ₃ ·Et ₂ O				161.0	

by the presence of boron trifluoride, the ¹H and ¹³C NMR spectra of the 1,5-dimethyl-4-phenylimidazolidin-2-one alone and with 1 equiv of BF_3 ⁺ Et_2O were recorded in CD_2Cl_2 . The comparison of 1H chemical shifts of the ground state and the complex showed a deshielding of H_4 and H_5 of 0.3 ppm (Table 2), while only small changes were observed in ${}^{13}C$ NMR chemical shifts. Indeed, only a shift of 1 ppm was observed for the signal relative to carbonyl C2, confirming a slight effect of the boron coordination on this position (Table 3). On the basis of 13 C results, the pentacoordination of boron may not be ruled out and further investigations have

been made through ¹¹B NMR.⁹ The spectra were recorded at rt, at $-$ 40 °C, and at $-$ 60 °C, taking BF₃ \cdot Et₂O (0 ppm) as external reference. The spectrum of $1-BF_3$ ⁺Et₂O (2 equiv) showed a unique signal at -0.9 ppm at room temperature, while a second signal at 0 ppm was observed when an excess of BF_3 Et_2O was added in the same sample. On the other hand, the signal at 0 ppm was already present when the spectra were recorded at $-$ 40 and -60 °C; this signal increased when BF_3 ^{\cdot} Et_2 O was added in excess.

On the basis of these results, the preferential hypothesis of a boron tetracoordination instead of a boron pentacoordination is advanced.10 Furthermore, the presence of a unique boron signal disfavors the possibility of formation of BF_4^- , obtained from the displacement of fluorine.¹¹

Therefore, in conclusion, we propose the coordination of each carbonyl group with a BF₃ molecule that allows the *syn* conformation of the substrate imide, in which electrostatic attractions between BF_3 at C1 $'$ and the partially positive carbonyl moiety could simulate chelation (Figure 3).

Figure 3. α , β -Unsaturated imide complex with BF₃ \cdot Et₂O (2 equiv).

Acknowledgment. We thank MURST (Cofin 2000 and 60%) and the University of Bologna (funds for selected topics "Sintesi e Caratterizzazione di Biomolecole per la Salute Umana") for financial support.

Supporting Information Available: The ¹H, ¹³C, and 11B spectra of compounds **1a** and **1b** and of the boron complex. This material is available free of charge via the Internet at http://pubs.acs.org.

OL015616N

^{(8) (}a) Maruoka, K.; Ooi, T. *Chem. Eur. J.* **¹⁹⁹⁹**, *³*, 829-833. (b) Ooi, T.; Uraguchi, D.; Kagoshima, N.; Maruoka, K. *J. Am. Chem. Soc.* **1998**, *¹²⁰*, 5327-5328.

⁽⁹⁾ Parks, D. J.; Piers, W. E.; Parvez, M.; Atencio, R.; Zaworotko, M. J. Organometallics 1998, 17, 1369–1377 and references therein. *Organometallics* **1998**, *17*, 1369-1377 and references therein.
(10) Lee D. Y.: Martin, J. C. J. Am. Chem. Soc. **1984**, *I*.

⁽¹⁰⁾ Lee, D. Y.; Martin, J. C. *J. Am. Chem. Soc*. **¹⁹⁸⁴**, *¹⁰⁶*, 5745- 5746.

⁽¹¹⁾ Mann, B. E. In *NMR and the Periodic Table*; Harris, R. K., Mann, B. E., Eds.; Academic Press: London, 1978; pp 91-93.